
Regular Expression

•Course Instructor: Tanmoy Chakraborty (NLP, Social Computing)

tanchak@iitd.ac.in

•Guest Lecture: TBD

•Course page: https://lcs2.in/nlp2402

•Piazza:
[Code: rd6ikjkzp7m]

• TAs:
• Sahil Mishra*, Aswini Kumar Padhi, Anwoy Chatterjee, Vaibhav

Seth

•Group Email:

http://piazza.com/iit_delhi/winter2025/deeplearningfornaturallanguageprocessing

http://piazza.com/iit_delhi/winter2025/deeplearningfornaturallanguageprocessing

Course Directives

• Class Time: Mon & Thu, 2 pm – 3:30 pm

• Office Hour: Mon 5-6 pm

• Room: LH-308

HashLearn
• Meet your instructor at least once

per 15 days to resolve your doubts.
• Mon 5-5:30 pm (appointment

based, email me at least 1 hr before
coming)

Marks distribution (tentative):
• Minor: 20%
• Major: 30%
• Quiz (3): 15%
• Assignment (2): 15%
• Mini-project: 18% (group-wise)
• Paper reading (1): 2% (group-wise)

• Audit: Discouraged!
 B- (threshold to pass the course)

• Grading Scheme: Relative?

• 75% attendance mandatory
• If <75%, one grade down

Content (Tentative)
• Introduction

 Classical NLP

 Neural NLP

 LLMs

• Regular Expressions, Text Normalization, and Edit Distance
• Morphology & Finite-state Transducers
• N-grams, smoothing and entropy
• HMM, Viterbi and A* decoding
• Word classes and POS tagging
• Semantics & distributional semantics

• Word vectors and word window classification (Word2Vec, GloVe, etc.)
• RNNs and language models (vanishing gradients, fancy RNNs)
• Sequence-to-sequence models and applications
• Attention mechanisms & self-attention
• Transformers

• More about Transformers (BERT, RoBERTA, ELMo, transfer learning)
• Prompting and In-context learning
• Alignment – RLHF, PPO, DPO
• Efficient LLMs
• LLM Agents
• Fairness and ethics in NLP

1
9

8
0

-2
0

1
0

2
0

1
1

 -
 2

0
1

7
2

0
1

8
 –

 t
ill

d

at
e

• For ScAI students: Application bucket
• For MT students: DE

• Decide if you want to take this course ASAP – Many students are
waiting
• Would be happy to increase the class size limit, if needed

• Finish Piazza enrolment
• Start forming your group for the course project

• Start learning Deep Learning, assuming you know ML well

Recap of the last lecture

• Understanding the semantics is a non-trivial task.

• Needs to performs a series of incremental tasks to achieve this.

• NLP happens in layers

NLP layers

Regular Expression

The most important tool for describing text patterns

used to specify strings we might want to extract from a document

Regular Expression (RE)

• A standard notation of characterizing a text sequence

• How can we search for any of the following:
• woodchuck

• woodchucks

• Woodchuck

• Woodchucks

• RE search requires a pattern and a corpus of texts to search through.

Regular Expression (RE)

• RE is case-sensitive

• Letters inside square brackets []

• Ranges [A-Z]

Pattern Matches

[wW]oodchuck Woodchuck, woodchuck

[1234567890] Any digit

RE Example patterns matched

woodchunks “interesting links to woodchanks and….”

a “Mary Ann stopped by Mona’s”

Pattern Matches

[A-Z] An upper case letter Drenched Blossoms

[a-z] A lower case letter my beans were impatient

[0-9] A single digit Chapter 1: Down the Rabbit Hole

Negation

• Negations [^Ss]
• Carat means negation only when it appears immediately after “[“

Pattern Matches Example patterns matched

[^A-Z] Not an upper case letter Oyfn pripetchik

[^Ss] Neither ‘S’ nor ‘s’ I have no exquisite reason”

[e^] Either ‘e’ or ‘^’ Look here

a^b The pattern ‘a’ carat ‘b’ Look up a^b now

It solves the problem of woodchuck vs. Woodchuck
But not woodchuck vs woodchucks
Not woodchuck vs groundhog

Question mark ?

Pattern Matches

Woodchucks? Woodchuck or Woodchucks

Colou?r Color or Colour

• ? Makes optimality of the pervious expression

It solves woodchuck vs woodchucks
Not woodchuck vs groundhog

pipe | for disjunction

Pattern Matches

groundhog|woodchuck Woodchucks is another name for groundhog

yours|mine yours mine

?? = [abc]

[gG]roundhog|[Ww]oodchuck

a|b|c

It solves woodchuck vs groundhog
But not woodchuckssssssssss

Kleene *, Kleene +

Pattern Matches

oo*h! 0 or more of previous char oh! ooh! oooh! ooooh!

[ab]* Zero or more a’s or b’s aaa ababab bbbb

o+h! 1 or more of previous char oh! ooh! oooh! ooooh!

baa+ baa baaa baaaa baaaaa

beg.n begin begun begun beg3n

• Kleene * => zero or more occurrences of the immediately previous character or
regular expression

• Kleene + => one or more of the previous character
• Period (.) matches any single character (except a carriage return)

Anchors ^ $

Pattern Matches

^[A-Z] Palo Alto

^[^A-Za-z] 1 “Hello”

\bthe\b the, not “other”

\.$ The end.

.$ The end?

The end!

• Caret ^ matches the start of a line
• Negations [^Ss] (careful!)

• \b matches a word boundary
• \B matches a non-boundary
• $ matches the end of a line

Anchors ^ $

Pattern Matches

^[A-Z] Palo Alto

^[^A-Za-z] 1 “Hello”

\bthe\b the, not “other”

\.$ The end.

.$ The end?

The end!

• Caret ^ matches the start of a line
• Negations [^Ss] (careful!)

• \b matches a word boundary
• \B matches a non-boundary
• $ matches the end of a line

Quiz

• Find all instances of the word “the” in a text.

the

You may miss capitalized examples

[tT]he

Incorrectly returns other or theology

[^a-zA-Z][tT]he[^a-zA-Z]

It won’t find the word the when it begins or ends a line

(^|[^a-zA-Z])[tT]he([^a-zA-Z]|$) Before the we require either the beginning-of-line or a non-alphabetic
 character, and the same at the end of the line.

https://www.regexpal.com/

Error

•We want to fix two kinds of errors
• False positives (Type I)

• Matching strings that we should not have matched (there,
then, other)

• False negatives (Type II)
• Not matching things that we should have matched (The)

• Accuracy or Precision: minimizing false positives
• Coverage or Recall: minimizing false negative

•Reducing error may require a trade-off between

Morphology

Challenges…

• How do we know that
• Both woorchunk and woodchuncks have same

original/root word?
• May be easy: the plural just tacks as s on to end

• But what about goose vs geese or fox vs foxes?

• Two kinds of knowledge:
• Orthographic rules: can solve woorchunk vs. woodchuncks
• Morphological rules: can distinguish goose vs geese

Orthographic/Spelling Rules

• General rules used when breaking a word into its stem and
modifiers.

• Example:
• Singular English words ending with –y, when pluralized,

end with –ies.
• Peccary vs. Peccaries

Morphological Rules

• Morphological rules are exceptions to the orthographic rules
used when breaking a word into its stem and modifiers.

• Example:
• Goose vs Geese is due to vowel change

Morphology: Definition

The study of words, how they are formed, and their
relationship to other words in the same language.

Morphological Parsing

• Parsing: Take an input and produce some sort of linguistic
structure

• Morphological parsing the process of determining the
morphemes from which a given word is constructed.

Terminologies

• Surface form: Raw text present in a corpus
• Example: going

• Token: a word present in running text (may be duplicated)

• Type: Unique word present in the running text

• Vocabulary: Set of types

they lay back on the San Francisco grass and looked at the stars and their

• 15 tokens (or 14)
• 13 types (or 12) (or 11?)

• Stem

• Affix : prefix/suffix/infix/circumfix

Church and Gale (1990): |V| > O(N½)

Circumfix
German: Sagen (to say) =>gesagt (said)

Infix
Tagalog: hingi (borrow) => humingi

Terminologies

• A word can have more than one affix
• Example: rewrites (re-, write,-s), unbelievably (un-, believe, -able, -ly)

• English doesn’t tend to stack more than 4 or 5 affixes

• Languages that tend to string affixes together like Turkish does
are called agglutinative languages
• Turkish can have words with 9 or 10 affixes

Terminologies
• Inflection: A word stem with a grammatical morpheme, usually

resulting in a word of the same class as the original stem.

• Example: Plural (-s) or past (-ed)

• Derivation: the combination of a word stem with a grammatical
morpheme, usually resulting in a word of a different class

• Example: computerize (verb) vs. computerization (noun)

Concatenative morphology is Easy!

• Non-concatenative morphology
• Philipian language (Tagalog)

• Um + hingi (request) = humingi
(ask for)

• Templatic morphology/root-and-
pattern morphology
• In Hebrew, a verb is constructed

from two components: a root (CCC)
and a template (ordering of C and V
to specify more semantic info)

• lmd (learn/study) can be combined
with active voice CaCaC template to
produce lamad (he studied)

• CiCeC => limed (he taught)

• CuCaC => lumad (he was taught)

The Porter Stemmer (Porter, 1980)

• A simple rule-based algorithm for stemming

• An example of a HEURISTIC method

• Based on rules like:
• ATIONAL -> ATE (e.g., relational -> relate)

• The algorithm consists of seven sets of rules, applied in order

The Porter Stemmer: definitions

• Definitions:
• CONSONANT: a letter other than A, E, I, O, U, and Y preceded by consonant (e.g. SYZYGY)
• VOWEL: any other letter

• With this definition, all words are of the form:
 (C)(VC)m(V)
C=string of one or more consonants (con+)
V=string of one or more vowels
m>=0

• E.g.,
• Tr ou bl e s
• C V C V C

The Porter Stemmer: rule format

• The rules are of the form:
 (condition) S1 -> S2

Where S1 and S2 are suffixes

• Conditions:
m The measure of the stem

*S The stem ends with S

v The stem contains a vowel

*d The stem ends with a
double consonant

*o The stem ends in CVC
(second C not W, X, or Y)

The Porter Stemmer: Step 1

• SSES -> SS
• caresses -> caress

• IES -> I
• ponies -> poni
• ties -> ti

• SS -> SS
• caress -> caress

• S -> є
• cats -> cat

The Porter Stemmer: Step 2a (past tense,
progressive)

• (m>0) EED -> EE
• Condition verified: agreed -> agree
• Condition not verified: feed -> feed

• (*V*) ED -> є
• Condition verified: plastered -> plaster
• Condition not verified: bled -> bled

• (*V*) ING -> є
• Condition verified: motoring -> motor
• Condition not verified: sing -> sing

m The measure of the stem

*S The stem ends with S

v The stem contains a vowel

*d The stem ends with a double
consonant

*o The stem ends in CVC (second C not
W, X, or Y)

The Porter Stemmer: Step 2b
 (cleanup)
• (These rules are ran if second or third rule in 2a apply)

• AT-> ATE
• conflat(ed) -> conflate

• BL -> BLE
• Troubl(ing) -> trouble

• (*d & ! (*L or *S or *Z)) -> single letter
• Condition verified: hopp(ing) -> hop, tann(ed) -> tan
• Condition not verified: fall(ing) -> fall

• (m=1 & *o) -> E
• Condition verified: fil(ing) -> file
• Condition not verified: fail -> fail

Why?

m The measure of the stem

*S The stem ends with S

v The stem contains a vowel

*d The stem ends with a
double consonant

*o The stem ends in CVC
(second C not W, X, or Y)

(*V*) ED -> є
Condition verified: plastered -> plaster
Condition not verified: bled -> bled

(*V*) ING -> є
Condition verified: motoring -> motor
Condition not verified: sing -> sing

The Porter Stemmer: Steps 3 and 4

• Step 3: Y Elimination (*V*) Y -> I
• Condition verified: happy -> happi

• Condition not verified: sky -> sky

• Step 4: Derivational Morphology,
• (m>0) ATIONAL -> ATE

• Relational -> relate

• (m>0) IZATION -> IZE
• generalization-> generalize

• (m>0) BILITI -> BLE
• sensibiliti -> sensible

m The measure of the stem

*S The stem ends with S

v The stem contains a vowel

*d The stem ends with a double
consonant

*o The stem ends in CVC (second C not
W, X, or Y)

The Porter Stemmer: Steps 5 and 6

• Step 5: Derivational Morphology, II
• (m>0) ICATE -> IC

• triplicate -> triplic
• (m>0) FUL -> є

• hopeful -> hope
• (m>0) NESS -> є

• goodness -> good

• Step 6: Derivational Morphology, III
• (m>0) ANCE -> є

• allowance-> allow
• (m>0) ENT -> є

• dependent-> depend
• (m>0) ANT -> є

• irritant -> irrit
• (m>0) IVE -> є

• effective -> effect

m The measure of the stem

*S The stem ends with S

v The stem contains a vowel

*d The stem ends with a double
consonant

*o The stem ends in CVC (second C not
W, X, or Y)

The Porter Stemmer: Step 7 (cleanup)

• Step 7a
• (m>1) E -> є

• probate -> probat

• (m=1 & !*o) NESS -> є
• goodness -> good

• Step 7b
• (m>1 & *d & *L) -> single letter

• Condition verified: controll -> control

• Condition not verified: roll -> roll

m The measure of the stem

*S The stem ends with S

v The stem contains a vowel

*d The stem ends with a double
consonant

*o The stem ends in CVC (second C not
W, X, or Y)

Examples

• computers
• Step 1, Rule 4: -> computer
• Step 6, Rule 4: -> compute

• singing
• Step 2a, Rule 3: -> sing

• controlling
• Step 2a, Rule 3: -> controll
• Step 7b : -> control

• generalizations
• Step 1, Rule 4: -> generalization
• Step 4, Rule 11: -> generalize
• Step 6, last rule: -> general

Problems

• elephants -> eleph
• Step 1, Rule 4: -> elephant

• Step 6, Rule 7: -> eleph

• Etc……

	Slide 1: Regular Expression
	Slide 2
	Slide 3: Course Directives
	Slide 4: Content (Tentative)
	Slide 5
	Slide 6: Recap of the last lecture
	Slide 7: NLP layers
	Slide 8: Regular Expression
	Slide 9: Regular Expression (RE)
	Slide 10: Regular Expression (RE)
	Slide 11: Negation
	Slide 12: Question mark ?
	Slide 13: pipe | for disjunction
	Slide 14: Kleene *, Kleene +
	Slide 15: Anchors ^ $
	Slide 16: Anchors ^ $
	Slide 17: Quiz
	Slide 19: Error
	Slide 20
	Slide 21: Challenges…
	Slide 22: Orthographic/Spelling Rules
	Slide 23: Morphological Rules
	Slide 24: Morphology: Definition
	Slide 25: Morphological Parsing
	Slide 26: Terminologies
	Slide 27: Terminologies
	Slide 28: Terminologies
	Slide 31: Concatenative morphology is Easy!
	Slide 37: The Porter Stemmer (Porter, 1980)
	Slide 38: The Porter Stemmer: definitions
	Slide 39: The Porter Stemmer: rule format
	Slide 40: The Porter Stemmer: Step 1
	Slide 41: The Porter Stemmer: Step 2a (past tense, progressive)
	Slide 42: The Porter Stemmer: Step 2b (cleanup)
	Slide 43: The Porter Stemmer: Steps 3 and 4
	Slide 44: The Porter Stemmer: Steps 5 and 6
	Slide 45: The Porter Stemmer: Step 7 (cleanup)
	Slide 46: Examples
	Slide 47: Problems

