Regular Expression



* Course Instructor: Tanmoy Chakraborty (NLP, Social Computing)
tanchak@iitd.ac.in

* Guest Lecture: TBD
* Course page: https://lcs2.in/nlp2402

* Piazza: http://piazza.com/iit_delhi/winter2025/deeplearningfornaturallanguageprocessing

[Code: rd6ikjkzp7m]

* TAs:

* Sahil Mishra*, Aswini Kumar Padhi, Anwoy Chatterjee, Vaibhav
Seth

* Group Email:


http://piazza.com/iit_delhi/winter2025/deeplearningfornaturallanguageprocessing

Course Directives

HashlLearn

* Class Time: Mon & Thu, 2 pm —3:30 pm « Meet your instructor at least once

e Office Hour: Mon 5-6 pm
* Room: LH-308

Marks distribution (tentative):

* Minor: 20%

* Major: 30%

 Quiz (3): 15%

e Assignment (2): 15%

* Mini-project: 18% (group-wise)

e Paper reading (1): 2% (group-wise)

—p per 15 days to resolve your doubts.

—

 Mon 5-5:30 pm (appointment
based, email me at least 1 hr before
coming)

e Audit: Discouraged!
B- (threshold to pass the course)

* Grading Scheme: Relative?

 75% attendance mandatory
* If <75%, one grade down



2018 - till

Content (Tentative)

2011 - 2017 1980-2010

date

<

Classical NLP

Neural NLP

LLMs

Introduction

Regular Expressions, Text Normalization, and Edit Distance
Morphology & Finite-state Transducers

N-grams, smoothing and entropy

HMM, Viterbi and A* decoding

Word classes and POS tagging

Semantics & distributional semantics

Word vectors and word window classification (Word2Vec, GloVe, etc.)
RNNs and language models (vanishing gradients, fancy RNNs)
Sequence-to-sequence models and applications

Attention mechanisms & self-attention

Transformers

More about Transformers (BERT, RoOBERTA, ELMo, transfer learning)
Prompting and In-context learning

Alignment — RLHF, PPO, DPO

Efficient LLMs

LLM Agents

Fairness and ethics in NLP



* For ScAl students: Application bucket
* For MT students: DE

* Decide if you want to take this course ASAP — Many students are
walting
* Would be happy to increase the class size limit, if needed

e Finish Piazza enrolment
 Start forming your group for the course project

e Start learning Deep Learning, assuming you know ML well



Recap of the last lecture



NLP layers

* Understanding the semantics is a non-trivial task.
* Needs to performs a series of incremental tasks to achieve this.

* NLP happens in layers

Pragmatics & Discourse

Study of semantics in context.

Semantics Meaning of the sentence.

Parsing Syntactic structure of the sentence.
Chunking Grouping of meaningful phrases.
Part of speech tagging Grammatical classes.
Morphology Study of word structure.

Increasing
Complexity Of
Processing



Regular Expression

The most important tool for describing text patterns

used to specify strings we might want to extract from a document



Regular Expression (RE)

* A standard notation of characterizing a text sequence

* How can we search for any of the following:

* woodchuck
* woodchucks
* Woodchuck
* Woodchucks

* RE search requires a pattern and a corpus of texts to search through.



Regular Expression (RE)
RE |Gamplepatternsmatched

woodchunks “interesting links to woodchanks and....”

a “Mary Ann stopped by Mona’s”

* RE is case-sensitive
 Letters inside square brackets []

[wWiW] oodchuck Woodchuck, woodchuck
[1234567890] Any digit

* Ranges [A-7] mm_

An upper case letter Drenched Blossoms
[a—z] A lower case letter my beans were impatient
[0-9] A single digit Chapter 1: Down the Rabbit Hole



Negation

* Negations ["Ss]
e Carat means negation only when it appears immediately after “[“

Pattern ___| Matches ______| Example patterns matched

["A-Z] Not an upper case letter Oyfn pripetchik

[~Ss] Neither ‘S’ nor ‘s’ I have no exgquisite reason”
[e”] Either ‘e’ or ‘V Look here

a™b The pattern ‘@’ carat ‘b’ Look up a”b now

It solves the problem of woodchuck vs. Woodchuck
But not woodchuck vs woodchucks
Not woodchuck vs groundhog



Question mark ?

* ? Makes optimality of the pervious expression

Woodchucks? Woodchuck or Woodchucks

Colou?r Color or Colour

It solves woodchuck vs woodchucks
Not woodchuck vs groundhog



pipe | for disjunction

groundhog|woodchuck Woodchucks is another name for groundhog
yours |mine yours mine
?alblc = [abc]

[gG] roundhog| [Ww] oodchuck

It solves woodchuck vs groundhog
But not woodchuckssssssssss



Kleene *, Kleene +

* Kleene * =>zero or more occurrences of the immediately previous character or

regular expression
* Kleene + => one or more of the previous character
* Period (.) matches any single character (except a carriage return)

oo*h! 0 or more of previous char oh! ooh! oooh! ooooh!
[ab]* Zero or more a’s or b’s aaa ababab bbbb

o+h! 1 or more of previous char oh! ooh! oooh! ooooh!
baa+ baa baaa baaaa baaaaa

beg.n begin begun begun beg3n




Anchors A S

e Caret * matches the start of a line
* Negations [*Ss] (careful!)

\b matches a word boundary

\B matches a non-boundary

S matches the end of a line




Anchors A S

e Caret * matches the start of a line
* Negations [*Ss] (careful!)

* \b matches a word boundary

* \B matches a non-boundary

* S matches the end of a line

~[A-Z] Palo Alto
~"A-Za-z] 1 “Hello”
\bthe\b the, not “other”
\.$ The end.

.S The end?

The end!



https://www.regexpal.com/
Quiz
* Find all instances of the word “the” in a text.

the

You may miss capitalized examples

[tT] he

Incorrectly returns other or theology

["a-zA-Z] [tT]lhe["a-zA-7]

It won’t find the word the when it begins or ends a line

(" ["a-zA-7Z]) [tT]he(["a-zA-7Z] | $) = Before the we require either the beginning-of-line or a non-alphabetic
character, and the same at the end of the line.



Error

* We want to fix two kinds of errors
* False positives (Type |)

e Matching strings that we should not have matched (there,
then, other)

* False negatives (Type Il)
* Not matching things that we should have matched (The)

* Reducing error may require a trade-off between

* Accuracy or Precision: minimizing false positives
* Coverage or Recall: minimizing false negative



Morphology



Challenges...

* How do we know that

e Both woorchunk and woodchuncks have same
original/root word?

* May be easy: the plural just tacks as s on to end

* But what about goose vs geese or fox vs foxes?

* Two kinds of knowledge:
* Orthographic rules: can solve woorchunk vs. woodchuncks
* Morphological rules: can distinguish goose vs geese



Orthographic/Spelling Rules

* General rules used when breaking a word into its stem and
modifiers.
* Example:

* Singular English words ending with —y, when pluralized,
end with —ies.

* Peccary vs. Peccaries



Morphological Rules

* Morphological rules are exceptions to the orthographic rules
used when breaking a word into its stem and modifiers.

* Example:
* Goose vs Geese is due to vowel change



Morphology: Definition

The study of words, how they are formed, and their
relationship to other words in the same language.



Morphological Parsing

* Parsing: Take an input and produce some sort of linguistic
structure

* Morphological parsing the process of determining the
morphemes from which a given word is constructed.



Tokens =\ Types = |V]|

' ' Switchboard phone 2.4 million 20 thousand
erminologies
Shakespeare 884,000 31 thousand

Google N-grams 1 trillion 13 million

: Church and Gale (1990): |V| > O(N”
» Surface form: Raw text present ina corpus - ale (1990): [V] > O(N”)

* Example: going
* Token: a word present in running text (may be duplicated)
* Type: Unique word present in the running text
* Vocabulary: Set of types
they lay back on the San Francisco grass and looked at the stars and their

e 15 tokens (or 14)
e 13 types(or12) (or 117?) Infix

Tagalog: hingi (borrow) => humingi
 Stem Circumfix

. . e ae e . . German: Sagen (to say) =>gesagt (said)
 Affix : prefix/suffix/infix/circumfix



Terminologies

* A word can have more than one affix
 Example: rewrites (re-, write,-s), unbelievably (un-, believe, -able, -ly)

* English doesn’t tend to stack more than 4 or 5 affixes

* Languages that tend to string affixes together like Turkish does
are called agglutinative languages

e Turkish can have words with 9 or 10 affixes



Terminologies

* Inflection: A word stem with a grammatical morpheme, usually
resulting in a word of the same class as the original stem.

* Example: Plural (-s) or past (-ed)

* Derivation: the combination of a word stem with a grammatical
morpheme, usually resulting in a word of a different class

 Example: computerize (verb) vs. computerization (noun)



Concatenative morphology is Easy!

* Non-concatenative morphology * Templatic morphology/root-and-

* Philipian language (Tagalog) pattern morphology
« Um + hingi (request) = humingi * In Hebrew, a verb is constructed
(ask for) from two components: a root (CCC)

and a template (ordering of Cand V
to specify more semantic info)

* Imd (learn/study) can be combined
with active voice CaCaC template to
produce lamad (he studied)

e CiCeC => limed (he taught)
* CuCaC =>lumad (he was taught)



The Porter Stemmer (Porter, 1980)

* A simple rule-based algorithm for stemming
* An example of a HEURISTIC method

* Based on rules like:
* ATIONAL -> ATE (e.g., relational -> relate)

* The algorithm consists of seven sets of rules, applied in order



The Porter Stemmer: definitions

e Definitions:

* CONSONANT: a letter other than A, E, I, O, U, and Y preceded by consonant (e.g. SYZYGY)
 VOWEL: any other letter

* With this definition, all words are of the form:
(C)(VC)™(V)
C=string of one or more consonants (con+)
V=string of one or more vowels
m>=0

* E.g.,
* Trouble s
e C VCVC



The Porter Stemmer: rule format

 The rules are of the form:
(condition) S1 ->S2
Where S1 and S2 are suffixes

e Conditions:

m The measure of the stem
*S The stem ends with S
*y* The stem contains a vowel
*d The stem ends with a

double consonant

The stem ends in CVC
(second C not W, X, or Y)




The Porter Stemmer: Step 1

e SSES -> SS
e caresses -> caress
e |[ES -> |
* ponies -> poni
e ties -> ti
e SS->SS
e caress -> caress
e S>¢
e cats -> cat



The Porter Stemmer: Step 2a (past tense,

progressive)

* (m>0) EED -> EE
* Condition verified: agreed -> agree
* Condition not verified: feed -> feed

e (*V*) ED -> ¢
* Condition verified: plastered -> plaster
* Condition not verified: bled -> bled

e (*V*)ING -> €
* Condition verified: motoring -> motor
* Condition not verified: sing -> sing

m The measure of the stem
*S The stem ends with S

*y* The stem contains a vowel
*d The stem ends with a double

consonant

The stem ends in CVC (second C not
W, X, orY)




The Porter Stemmer: Step 2b
(cleanup)

* (These rules are ran if second or third rule in 2a apply)

° AT-> ATE m The measure of the stem
 conflat(ed) -> conflate *S | The stem ends with S
* bl BL -> ill_E *v* | The stem contains a vowel
roubl(ing) -> trouble _ *d | The stem ends with a
e (*d & ! (*L or *S or *Z)) -> single letter double consonant
» Condition verified: hopp(ing) -> hop, tann(ed) -> tan *s | The stem ends in CVC
* Condition not verified: fall(ing) -> fall (second C not W, X, orY)

o — % _> (*V*) ED -> €
(m 1& ) ,O) . ) E_ ) Condition verified: plastered -> plaster
* Condition verified: fil(ing) -> file Condition not verified: bled -> bled
(*V*) ING -> €

* Condition not verified: fail -> fail

Condition verified: motoring -> motor
Condition not verified: sing -> sing




The Porter Stemmer: Steps 3 and 4

e Step 3: Y Elimination (*V*) Y -> |
* Condition verified: happy -> happi
* Condition not verified: sky -> sky

* Step 4: Derivational Morphology,
 (m>0) ATIONAL -> ATE

* Relational -> relate
e (m>0) IZATION -> IZE

* generalization-> generalize
* (m>0) BILITI -> BLE

* sensibiliti -> sensible

m The measure of the stem
*S The stem ends with S

*y* The stem contains a vowel
*d The stem ends with a double

consonant

The stem ends in CVC (second C not
W, X, orY)




The Porter Stemmer: Steps 5 and 6

* Step 5: Derivational Morphology, I
e (M>0) ICATE ->IC
* triplicate -> triplic
e (M>0) FUL->¢€
* hopeful -> hope
* (M>0) NESS -> €
e goodness -> good

* Step 6: Derivational Morphology, Il
e (M>0) ANCE -> €
* allowance-> allow
e (M>0) ENT > €
* dependent-> depend
e (M>0) ANT > €
* jrritant -> irrit
e (m>0) IVE -> €
* effective -> effect

m The measure of the stem

*S The stem ends with S

*y* The stem contains a vowel

*d The stem ends with a double
consonant

*0 The stem ends in CVC (second C not

W, X, orY)




The Porter Stemmer: Step 7 (cleanup)

* Step /a
e (Mm>1)E->¢
e probate -> probat
e (m=1& !*0) NESS -> €
e goodness -> good
e Step 7b

e (Mm>1& *d & *L) -> single letter
* Condition verified: controll -> control
* Condition not verified: roll -> roll

m The measure of the stem

*S The stem ends with S

*y* The stem contains a vowel

*d The stem ends with a double
consonant

*0 The stem ends in CVC (second C not

W, X, orY)




Examples

* computers
e Step 1, Rule 4: -> computer
e Step 6, Rule 4: -> compute
* singing
e Step 23, Rule 3: -> sing
e controlling

e Step 23, Rule 3: -> controll
e Step 7b : -> control

e generalizations
e Step 1, Rule 4: -> generalization
e Step 4, Rule 11: -> generalize
e Step 6, last rule: -> general



Problems

* elephants -> eleph
e Step 1, Rule 4: -> elephant
e Step 6, Rule 7: -> eleph



	Slide 1: Regular Expression
	Slide 2
	Slide 3: Course Directives
	Slide 4: Content (Tentative)
	Slide 5
	Slide 6: Recap of the last lecture
	Slide 7: NLP layers
	Slide 8: Regular Expression
	Slide 9: Regular Expression (RE)
	Slide 10: Regular Expression (RE)
	Slide 11: Negation
	Slide 12: Question mark ?
	Slide 13: pipe | for disjunction
	Slide 14: Kleene *,   Kleene +   
	Slide 15: Anchors  ^   $
	Slide 16: Anchors  ^   $
	Slide 17: Quiz
	Slide 19: Error
	Slide 20
	Slide 21: Challenges…
	Slide 22: Orthographic/Spelling Rules
	Slide 23: Morphological Rules
	Slide 24: Morphology: Definition
	Slide 25: Morphological Parsing
	Slide 26: Terminologies
	Slide 27: Terminologies
	Slide 28: Terminologies
	Slide 31: Concatenative morphology is Easy!
	Slide 37: The Porter Stemmer (Porter, 1980)
	Slide 38: The Porter Stemmer: definitions
	Slide 39: The Porter Stemmer: rule format
	Slide 40: The Porter Stemmer: Step 1
	Slide 41: The Porter Stemmer: Step 2a (past tense, progressive)
	Slide 42: The Porter Stemmer: Step 2b  (cleanup)
	Slide 43: The Porter Stemmer: Steps 3 and 4
	Slide 44: The Porter Stemmer: Steps 5 and 6
	Slide 45: The Porter Stemmer: Step 7 (cleanup)
	Slide 46: Examples
	Slide 47: Problems

